

Semi-Inclusive Jet Measurements in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR

Jan Rusňák for the STAR Collaboration

Nuclear Physics Institute ASCR

Motivation for Jet Studies

Jets: collimated sprays of hadrons created by fragmentation and hadronization of hard-scattered partons

Elementary collisions: fundamental test of pQCD

Heavy-ion collisions: energy loss mechanism in Quark Gluon Plasma (QGP)

Di-hadron Measurements: Proxy to Jets

intermediate trigger momentum:

Central Au+Au collisions: suppression of away side jet - "jet quenching" d+Au: no suppression -> medium effect

Better understanding of jet quenching => fully reconstructed jets

Phys. Rev. Lett. 97 (2006) 162301

high trigger momentum:

Central Au+Au: away-side "jet" suppression of the order of charged hadrons suppression

STAR Experiment

Relativistic Heavy Ion Collider (RHIC)

Unique machine:

polarized p+p collisions, wide range of species, $\sqrt{s_{NN}}$ from 5.5 to 510 GeV, asymmetric collision...

Time Projection Chamber

Barrel ElectroMagnetic Calorimeter

Data-set:

- TPC tracks only
- Year 2011 Au+Au √s_{NN}=200GeV

Solenoidal Tracker at RHIC (STAR)

full azimuthal coverage

pseudo-rapidity coverage: $-1 < \eta < 1$

TPC: low-momentum tracking (0.1 GeV/c)

Jet Reconstruction in Heavy Ion Collisions

LHC:

- Jets dominate over the background
- → Clear jet identification (at high p₊)

RHIC:

- Background fluctuations comparable to signal → Jet identification is extremely challenging task
- Signal identification on statistical basis

arXiv:0906.1598

Jet Reconstruction Algorithms

- infrared and collinear safe reconstruction algorithms (FASTJET [Cacciari, Salam, Soyez : Eur.Phys. J. **C72** (2012) 1896])
- clustering algorithms:

• k_{τ} - starts clustering from low- p_{τ} particles; irregular jet shapes

• anti- $k_{_{\rm T}}$ - starts clustering from high- $p_{_{\rm T}}$ particles; cone-like jet shapes

- jet reconstruction: different resolution parameters R
- correction for background energy density $\rho = med\{\frac{p_{T,i}}{A_i}\}$ A_i ...jet area

$$p_{T,reco} = p_T - A_{jet} \times \rho$$

Background Fluctuations

 Simulated jets embed into real events to determine effect of background fluctuations on jet momentum

$$\delta p_T = p_{T,reco} - p_{T,emb} = p_T - A_{jet} \times \rho - p_{T,emb}$$

- δp_T depends little on embedded particle momentum
- δp_T used to unfold the spectrum

Semi-inclusive Recoil Jets

Trigger: high- p_{τ} hadron \rightarrow selects hard event

Recoil side: use all jet candidates within +/- 45°

→ no fragmentation bias

Observable: Recoil jets per trigger

$$\frac{1}{N_{trig}^{h}} \frac{dN_{jet}}{dp_{T, jet}} = \frac{1}{\sigma^{AA \to h+X}} \frac{d\sigma^{AA \to h+jet+X}}{dp_{T, jet}}$$

Measured

Calculable in NLO pQCD

Semi-inclusive Recoil Jets

Analysis in STAR:

- Recoil jet azimuth: $|\Delta \phi \pi| < \pi/4$
- No rejection of jet candidates on jet-by-jet basis
- Jet measurement is collinear-safe with low infrared cutoff (0.2 GeV/c)
- Background subtraction:

Mixed event technique

ALICE:

 Background subtraction: two different trigger track (TT) p_T ranges

Mixed Event Generation for Jets

Raw Charged Recoil Jet Spectrum: Central

- Excellent description of low $p_{\scriptscriptstyle T}$ SE spectrum with ME
- Normalization region varied systematically
- Significant jet signal at $p_T^{reco} = p_T \rho A > 10 \text{ GeV/c}$

Combinatorial jet background statistically described by mixed event technique

Raw Charged Recoil Jet Spectrum: Reference

- Reference spectrum: peripheral collisions
- Much less combinatorial background compared to most central data
- Excellent signal/background ratio down to 3 GeV/c

Reference vs. PYTHIA

- Background-subtracted spectrum in 60%-80% Au+Au in comparison with smeared PYTHIA
- PYTHIA shape in good agreement with 60%-80% data
- small suppression in yield (data/PYTHIA)

Recoil Jet Energy Loss

- Significant suppression (central/smeared PYTHIA) over whole $p_{\scriptscriptstyle T}$ range
 - → energy loss
- Very similar shape over 4 orders of magnitude

Unfolding Examples

Central (Levy prior example)

Peripheral (PYTHIA prior example)

- SVD and Bayesian unfolding used
- Systematic variation of: Prior → {Levy function (T, n), PYTHIA}, regularization parameter, +/-5% efficiency variation, ME normalization, δp_τ distribution (single particle embedding, PYTHIA jet embedding)
- Check based on backfolding χ²

Comparison Central-Peripheral: I_{CP}

Significant suppression (~0.2)

Errors show combined systematics of unfolding and track reconstruction

Summary

- First measurement of hadron triggered recoil jet spectra at RHIC
- New mixed event technique can reproduce combinatorial jet background
- Low p_{τ} jets accessible, and no bias on recoil jet side
- Direct comparison to pQCD calculations possible
- Suppression (~0.2) is larger compared to LHC energies

Outlook

- Full jet reconstruction @ 200 GeV+ more statistics soon
- Low energy (Au+Au @ 62.4 GeV) jet reconstruction

BACKUP

Large Angle Scattering off the QGP?

Discrete scattering centers or effectively continuous medium?

Scattering probability can give us important information about coupling

- strongly/weakly coupled QGP
- quasiparticles?

Large Angle Scattering at LHC

 No additional broadening observed in Pb+Pb compared to p+p so far

$\Delta \Phi$, 60%-80%, R = 0.3

•
$$\Delta \Phi = \Phi_{trig} - \Phi_{jet}$$

- Projections for different recoil jet p_T
- Gaussian + 0th order polynomial
- Fit results do not depend on ME normalization
- Almost no pedestal for 60%-80%

$\Delta\Phi$, 0%-10%, R = 0.3

•
$$\Delta \Phi = \Phi_{trig} - \Phi_{jet}$$

- Projections for different recoil jet $p_{\scriptscriptstyle T}$
- Gaussian + 0th order polynomial
- Fit results do not depend on ME normalization
- Some pedestal for 0%-10%

Δ Φ, at low p_T

- Significant difference at $5 < p_{\tau}-\rho A < 8$ GeV/c
 - → Flow?
 - → Φ dependent normalization needed?
 - → Background from multiple interactions?
 - → More studies needed!

Inclusive Jet Measurement

- combinatorial background reduced by a cut on leading hadron $p_{_{\rm T}}$ [G. de Barros et al, Nucl. Phys. A910:314-318, 2013]
- induces bias (however jet can still contain many soft constituents)

Inclusive Charged Jet Spectra

- Measured spectra corrected via Bayesian unfolding
- Jet energy scale resolution: roughly 5% (mainly due to track. eff. uncertainty)
- R_{AA}: Work in progress: further systematic uncertainties, pp baseline improvement

Inclusive Charged Jet Spectra

- Measured spectra corrected via Bayesian unfolding
- Jet energy scale resolution: roughly 5% (mainly due to track. eff. uncertainty)
- R_{AA} : Work in progress: further systematic uncertainties, pp baseline improvement

Jet Imbalance $A_{_{\rm J}}$ Measurements

$$A_{J} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

- di-jet momentum asymmetry
- signal of medium-induced jet modification

A_1 Calculation in STAR

 p_{T}^{Lead} >20 GeV/c $p_{T}^{SubLead}$ >10 GeV/c $\Delta\Phi_{Lead,SubLead}$ > 2/3 π

Calculate A_J with constituent HIGH $p_{T,cut}>2$ GeV/c

$$A_{J} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}, \quad p_{T} = p_{T}^{rec} - \rho \times A$$

A_1 Calculation in STAR

 p_{T}^{Lead} >20 GeV/c $p_{T}^{SubLead}$ >10 GeV/c $\Delta\Phi_{Lead,SubLead}$ > 2/3 π

Rerun jet-finding algorithm anti-k_⊤ on these events ...

Calculate A_J with constituent HIGH $p_{T,cut}>2$ GeV/c

$$A_J = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}, \quad p_T = p_T^{rec} - \rho \times A$$

\overline{A}_1 Calculation in STAR

 p_{T}^{Lead} >20 GeV/c $p_{T}^{SubLead}$ >10 GeV/c $\Delta\Phi_{Lead,SubLead}$ > 2/3 π

Calculate "matched" A_J with

constituent LOW p_{T,cut}>0.2 GeV/c

Calculate A_{J} with constituent HIGH $p_{T,cut}>2$ GeV/c

$$A_{J} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}, \quad p_{T} = p_{T}^{rec} - \rho \times A$$

$A_{\rm J}$: R=0.2

R=0.2: Matched Au+Au ≠ matched p+p

$A_{\rm J}$: R=0.4

p-value<10⁻⁵ (stat. error only)

p-value~0.8 (stat. error only)

=>Energy recovered for R=0.4 with low p_{T} particles